ctf中常见RSA题型总结

一、基础RSA解密脚本

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import binascii
import gmpy2
n=0x80b32f2ce68da974f25310a23144977d76732fa78fa29fdcbf
#这边用yafu分解了n
p=780900790334269659443297956843
q=1034526559407993507734818408829
e=0x10001
c=0x534280240c65bb1104ce3000bc8181363806e7173418d15762


phi=(p-1)*(q-1)
d=gmpy2.invert(e,phi)
m=pow(c,d,n)
print(hex(m))
print(binascii.unhexlify(hex(m)[2:].strip("L")))

二、p和q相差过大或过小

因为n=p*q其中若p和q的值相差较小,或者较大,都会造成n更容易分解的结果例如:

p=getPrime(512)
q=gmpy2.next_prime(p)
n=p*q

因为p和q十分接近,所以可以使用yafu或http://factordb.com/直接分解

三、公约数分解n

当题目给的多对公钥n是公用了一个素数因子的时候,可以尝试公约数分解。源码一般如下

p1=getPrime(512)
p2=getPrime(512)
q=getPrime(512)
n1=p1*q
n2=p2*q

所以当题目给了多个n,并且发现n无法分解,可以尝试是否有公约数。

欧几里得辗转相除法

求公约数可以使用欧几里得辗转相除法,脚本如下

脚本

def gcd(a, b):   #求最大公约数
if a < b:
a, b = b, a
while b != 0:
temp = a % b
a = b
b = temp
return a

n1=0x6c9fb4bf11344e4c818be178e3d3db352797099f929e4ba8fa86d9c4ce3d8f71e3daa8c795b67dc2dabe1e1608836904386c364ecec759c27eaa83eb93710003d4cc848e558f7b11372405c5787b60eca627372767455a5fcf30cb6c157ca5a6267d63ffa16fe49e7433136a47945de2219f46a35f2b6a58196057c602e72a0b
n2=0x46733cc071bdee0d178fb32836a6b0a2f145a681df47d31ea9d9fc5b5fa0cc7ddbcd34531aefeace9840fc890f7a111f73593c9a41886b9a6f91cde3e6f9c71821a8ad877de51f78094599209746e80635c5625459ad7ba14f926b74875c8980a9436d6bbd54e1d9da72ae200383516098c04e24f58b23b4a8142cef0c931a55
print(gcd(n1,n2))

使用欧几里得辗转相除得到共有的因子,然后n1和n2除以这个因子,即可得到另一个素数因子。

四、模数分解(已知e,d,n求p,q)

已知e,d,n求p,q 例如

('d=', '0x455e1c421b78f536ec24e4a797b5be78df09d8d9e3b7f4e2244138a7583e810adf6ad056bb59a91300c9ead5ed77ea6bafdebf7ab2d9ec200127901083c7ffca45e83f2c934358366a2b6207b96a0eae6df0476060c063c281512834a42350a3b56bc09f5cec1a6975257d7f12a58f6389060e49b41f05e88ea2b30b395f6391')
('e=', '0x10001')
('n=', '0x71ee0f4883690893ab503e97e25e6308d4c1e0a050cbea7b9c040f7a5b5b484afcecc8a9b3cc6bf089a1e83281562df217caab7220e3dfc14399139ce437af2f131f9345675e4d848cfab5827818eeab7834374be4a0513f81f3df125a932c2bb4c24c834d798bcc80f9c4a8770b01f8e54620b72a4f0491edd391e635d48e71L')

模数分解

私钥d的获取是通过

d = gmpy2.invert(e, (p-1)*(q-1))

实现如下

import random  
def gcd(a, b):  
if a < b:  
a, b = b, a  
while b != 0:  
temp = a % b  
a = b  
b = temp  
return a  
def getpq(n,e,d):
p = 1  
q = 1  
while p==1 and q==1:  
k = d * e - 1  
g = random.randint ( 0 , n )  
while p==1 and q==1 and k % 2 == 0:  
k /= 2  
y = pow(g,k,n)  
if y!=1 and gcd(y-1,n)>1:  
p = gcd(y-1,n)  
q = n/p  
return p,q  

n=0x71ee0f4883690893ab503e97e25e6308d4c1e0a050cbea7b9c040f7a5b5b484afcecc8a9b3cc6bf089a1e83281562df217caab7220e3dfc14399139ce437af2f131f9345675e4d848cfab5827818eeab7834374be4a0513f81f3df125a932c2bb4c24c834d798bcc80f9c4a8770b01f8e54620b72a4f0491edd391e635d48e71
e=0x10001
d=0x455e1c421b78f536ec24e4a797b5be78df09d8d9e3b7f4e2244138a7583e810adf6ad056bb59a91300c9ead5ed77ea6bafdebf7ab2d9ec200127901083c7ffca45e83f2c934358366a2b6207b96a0eae6df0476060c063c281512834a42350a3b56bc09f5cec1a6975257d7f12a58f6389060e49b41f05e88ea2b30b395f6391
p,q=getpq(n,e,d)
print("p=",p)
print("q=",q)
print(p*q==n)

五、dp&dq泄露

首先了解一下什么是dp、dq

dp=d%(p-1)
dq=d%(q-1)

这种参数是为了让解密的时候更快速产生的

假设题目仅给出p,q,dp,dq,c,即不给公钥e

('p=', '0xf85d730bbf09033a75379e58a8465f8048b8516f8105ce2879ce774241305b6eb4ea506b61eb7e376d4fcd425c76e80cb748ebfaf3a852b5cf3119f028cc5971L')
('q=', '0xc1f34b4f826f91c5d68c5751c9af830bc770467a68699991be6e847c29c13170110ccd5e855710950abab2694b6ac730141152758acbeca0c5a51889cbe84d57L')
('dp=', '0xf7b885a246a59fa1b3fe88a2971cb1ee8b19c4a7f9c1a791b9845471320220803854a967a1a03820e297c0fc1aabc2e1c40228d50228766ebebc93c97577f511')
('dq=', '0x865fe807b8595067ff93d053cc269be6a75134a34e800b741cba39744501a31cffd31cdea6078267a0bd652aeaa39a49c73d9121fafdfa7e1131a764a12fdb95')
('c=', '0xae05e0c34e2ba4ca3536987cc2cfc3f1f7f53190164d0ac50b44832f0e7224c6fdeebd2c91e3991e7d179c26b1b997295dc9724925ba431f527fba212703a0d14a34ce133661ae0b6001ee326303d6ccdc27dbd94e0987fae25a84f197c1535bdac9094bfb3846b7ca696b2e5082bea7bff804da275772ca05dd51b185a4fc30L')

解密代码如下

import gmpy2
import binascii
def decrypt(dp,dq,p,q,c):
InvQ = gmpy2.invert(q,p)
mp = pow(c,dp,p)
mq = pow(c,dq,q)
m=(((mp-mq)*InvQ)%p)*q+mq
print (binascii.unhexlify(hex(m)[2:]))

p=0xf85d730bbf09033a75379e58a8465f8048b8516f8105ce2879ce774241305b6eb4ea506b61eb7e376d4fcd425c76e80cb748ebfaf3a852b5cf3119f028cc5971
q=0xc1f34b4f826f91c5d68c5751c9af830bc770467a68699991be6e847c29c13170110ccd5e855710950abab2694b6ac730141152758acbeca0c5a51889cbe84d57
dp=0xf7b885a246a59fa1b3fe88a2971cb1ee8b19c4a7f9c1a791b9845471320220803854a967a1a03820e297c0fc1aabc2e1c40228d50228766ebebc93c97577f511
dq=0x865fe807b8595067ff93d053cc269be6a75134a34e800b741cba39744501a31cffd31cdea6078267a0bd652aeaa39a49c73d9121fafdfa7e1131a764a12fdb95
c=0xae05e0c34e2ba4ca3536987cc2cfc3f1f7f53190164d0ac50b44832f0e7224c6fdeebd2c91e3991e7d179c26b1b997295dc9724925ba431f527fba212703a0d14a34ce133661ae0b6001ee326303d6ccdc27dbd94e0987fae25a84f197c1535bdac9094bfb3846b7ca696b2e5082bea7bff804da275772ca05dd51b185a4fc30
decrypt(dp,dq,p,q,c)

六、dp泄露

场景介绍

假设题目给出公钥n,e以及dp

('dp=', '0x7f1344a0b8d2858492aaf88d692b32c23ef0d2745595bc5fe68de384b61c03e8fd054232f2986f8b279a0105b7bee85f74378c7f5f35c3fd505e214c0738e1d9')
('n=', '0x5eee1b4b4f17912274b7427d8dc0c274dc96baa72e43da36ff39d452ff6f2ef0dc6bf7eb9bdab899a6bb718c070687feff517fcf5377435c56c248ad88caddad6a9cefa0ca9182daffcc6e48451d481f37e6520be384bedb221465ec7c95e2434bf76568ef81e988039829a2db43572e2fe57e5be0dc5d94d45361e96e14bd65L')
('e=', '0x10001')
('c=', '0x510fd8c3f6e21dfc0764a352a2c7ff1e604e1681a3867480a070a480f722e2f4a63ca3d7a92b862955ab4be76cde43b51576a128fba49348af7a6e34b335cfdbda8e882925b20503762edf530d6cd765bfa951886e192b1e9aeed61c0ce50d55d11e343c78bb617d8a0adb7b4cf3b913ee85437191f1136e35b94078e68bee8dL')

给出密文要求解明文 我们可以通过n,e,dp求解私钥d

首先dp是

dp=d%(p-1)

以下推导过程如果有问题欢迎指正 现在我们可以知道的是

c≡m^e mod n
m≡c^d mod n
ϕ(n)=(p−1)∗(q−1)
d∗e≡1 mod ϕ(n)
dp≡d mod (p−1)

由上式可以得到

dp∗e≡d∗e mod (p−1)

因此可以得到

d∗e=k∗(p−1)+dp∗ed∗e≡1 mod ϕ(n)

我们将式1带入式2可以得到

k∗(p−1)+dp∗e≡1 mod (p−1)∗(q−1)

故此可以得到

k2∗(p−1)∗(q−1)+1=k1∗(p−1)+dp∗e

变换一下

(p−1)∗[k2∗(q−1)−k1]+1=dp∗e

因为

dp<p−1

可以得到

e>k2∗(q−1)−k1

我们假设

x=k2∗(q−1)−k1

可以得到x的范围为

(0,e)

因此有

x∗(p−1)+1=dp∗e

那么我们可以遍历

x∈(0,e)

求出p-1,求的方法也很简单,遍历65537种可能,其中肯定有一个p可以被n整除那么求出p和q,即可利用

ϕ(n)=(p−1)∗(q−1)d∗e≡1 mod ϕ(n)

推出

d≡1∗e−1 mod ϕ(n)

注:这里的-1为逆元,不是倒数的那个-1

脚本

import gmpy2
import binascii

def getd(n,e,dp):
for i in range(1,e):
if (dp*e-1)%i == 0:
if n%(((dp*e-1)/i)+1)==0:
p=((dp*e-1)/i)+1
q=n/(((dp*e-1)/i)+1)
phi = (p-1)*(q-1)
d = gmpy2.invert(e,phi)%phi
return d

dp=0x7f1344a0b8d2858492aaf88d692b32c23ef0d2745595bc5fe68de384b61c03e8fd054232f2986f8b279a0105b7bee85f74378c7f5f35c3fd505e214c0738e1d9
n=0x5eee1b4b4f17912274b7427d8dc0c274dc96baa72e43da36ff39d452ff6f2ef0dc6bf7eb9bdab899a6bb718c070687feff517fcf5377435c56c248ad88caddad6a9cefa0ca9182daffcc6e48451d481f37e6520be384bedb221465ec7c95e2434bf76568ef81e988039829a2db43572e2fe57e5be0dc5d94d45361e96e14bd65
e=0x10001
c=0x510fd8c3f6e21dfc0764a352a2c7ff1e604e1681a3867480a070a480f722e2f4a63ca3d7a92b862955ab4be76cde43b51576a128fba49348af7a6e34b335cfdbda8e882925b20503762edf530d6cd765bfa951886e192b1e9aeed61c0ce50d55d11e343c78bb617d8a0adb7b4cf3b913ee85437191f1136e35b94078e68bee8d


d=getd(n,e,dp)
m=pow(c,d,n)
print (binascii.unhexlify(hex(m)[2:]))

七、e与φ(n)不互素(给出两组公钥n,e及密文)

假设题目给出两组公钥n,e以及第一组、第二组加密后的密文

('n1=', '0xbf510b8e2b169fbce366eb15a4f6c71b370f02f2108c7feb482234a386185bce1a740fa6498e04edbdf2a639e320619d9f39d3e740ebaf578af0426bc3e851001a1d599108a08725347f6680a7f5581a32d91505023701872c3df723e8de9f201d3b17059bebff944b915045870d757eb6d6d009eb4561cc7e4b89968e4433a9L')
('e1=', '0x15d6439c6')
('c1=', '0x43e5cc4c99c3040aef2ccb0d4c45266f6b75cd7f9f1be105766689283f0886061c9cd52ac2b2b6c1b7d250c2079f354ca9b988db5556336201f3b5e489916b3b60b80c34bef8f608d7471fafaf14bee421b60630f42c5cc813356e786ff10e5efa334b8a73b7ea06afa6043f33be6a31010d306ba60516243add65c183da843aL')
('n2=', '0xba85d38d1bfc3fb281927c9246b5b771ac3344ca9fe1c2d9c793a886bffb5c84558f4a578cd5ba9e777a4e08f66d0cabe05b9aa2ae8d075778b5fbfff318a7f9b6f22e2eff6f79d8c1148941b3974f3e83a4a4f1520ad42336eddc572ec7ea04766eb798b2f1b1b52009b3eeea7741b2c55e3c7c11c5cf6a4e204c6b0d312f49L')
('e2=', '0x2c09848c6')
('c2=', '0x79ec6350649377f69b475eca83a7d9d5356a1d62e29933e9c8e2b19b4b23626a581037aba3be6d7f73d5bed049350e41c1ed4cdc3e10ee34ec576ef3449be2f7d930c759612e1c23c4db71d0e5185a80b548031e3857dd93eca4af017fcd25895fcc4e8a2b36c1dd36b8cd9cc9200e2879f025928fe346e2cfae5200e66de6ccL')

首先用公约数分解可以分解得到n1、n2的因子 但是发现e和φ(n)是不互为素数的,所以我们无法求出私钥d。

解题公式推导

gcd(e1,(p-1)*(q1-1))
gcd(e2,(p-1)*(q2-1))

得到结果为79858 也就是说,e和φ(n)不互素且具有公约数79858

1、首先我们发现n1、n2可以用公约数分解出p、q 但是由于e与φ(n)不互素,所以我们无法求解得到私钥d 只有当他们互素时,才能保证e的逆元d唯一存在。 公式推导过程参考博客 https://blog.csdn.net/chenzzhenguo/article/details/94339659

脚本

#!/usr/bin/env python
# -*- coding:utf-8 -*-
import gmpy2
import binascii


def gcd(a, b):
if a < b:
a, b = b, a
while b != 0:
temp = a % b
a = b
b = temp
return a

n1=0xbf510b8e2b169fbce366eb15a4f6c71b370f02f2108c7feb482234a386185bce1a740fa6498e04edbdf2a639e320619d9f39d3e740ebaf578af0426bc3e851001a1d599108a08725347f6680a7f5581a32d91505023701872c3df723e8de9f201d3b17059bebff944b915045870d757eb6d6d009eb4561cc7e4b89968e4433a9
n2=0xba85d38d1bfc3fb281927c9246b5b771ac3344ca9fe1c2d9c793a886bffb5c84558f4a578cd5ba9e777a4e08f66d0cabe05b9aa2ae8d075778b5fbfff318a7f9b6f22e2eff6f79d8c1148941b3974f3e83a4a4f1520ad42336eddc572ec7ea04766eb798b2f1b1b52009b3eeea7741b2c55e3c7c11c5cf6a4e204c6b0d312f49

p=gcd(n1,n2)
q1=n1//p
q2=n2//p



c1=0x43e5cc4c99c3040aef2ccb0d4c45266f6b75cd7f9f1be105766689283f0886061c9cd52ac2b2b6c1b7d250c2079f354ca9b988db5556336201f3b5e489916b3b60b80c34bef8f608d7471fafaf14bee421b60630f42c5cc813356e786ff10e5efa334b8a73b7ea06afa6043f33be6a31010d306ba60516243add65c183da843a
c2=0x79ec6350649377f69b475eca83a7d9d5356a1d62e29933e9c8e2b19b4b23626a581037aba3be6d7f73d5bed049350e41c1ed4cdc3e10ee34ec576ef3449be2f7d930c759612e1c23c4db71d0e5185a80b548031e3857dd93eca4af017fcd25895fcc4e8a2b36c1dd36b8cd9cc9200e2879f025928fe346e2cfae5200e66de6cc
e1 =0x15d6439c6
e2 =0x2c09848c6

#print(gcd(e1,(p-1)*(q1-1)))
#print(gcd(e2,(p-1)*(q2-1)))


e1=e1//gcd(e1,(p-1)*(q1-1))
e2=e2//gcd(e2,(p-1)*(q2-1))


phi1=(p-1)*(q1-1);phi2=(p-1)*(q2-1)
d1=gmpy2.invert(e1,phi1)
d2=gmpy2.invert(e2,phi2)
f1=pow(c1,d1,n1)
f2=pow(c2,d2,n2)


def GCRT(mi, ai):
curm, cura = mi[0], ai[0]
for (m, a) in zip(mi[1:], ai[1:]):
d = gmpy2.gcd(curm, m)
c = a - cura
K = c // d * gmpy2.invert(curm // d, m // d)
cura += curm * K
curm = curm * m // d
cura %= curm
return (cura % curm, curm)


f3,lcm = GCRT([n1,n2],[f1,f2])
n3=q1*q2
c3=f3%n3
phi3=(q1-1)*(q2-1)

d3=gmpy2.invert(39929,phi3)#39929是79858//gcd((q1-1)*(q2-1),79858) 因为新的e和φ(n)还是有公因数2
m3=pow(c3,d3,n3)

if gmpy2.iroot(m3,2)[1] == 1:
flag=gmpy2.iroot(m3,2)[0]
print(binascii.unhexlify(hex(flag)[2:].strip("L")))

八、公钥n由多个素数因子组成

题目如下

('n=', '0xf1b234e8a03408df4868015d654dcb931f038ef4fc0be8658c9b951ee6c60d23689a1bfb151e74df0910fa1cf8a542282a65')
('e=', '0x10001')
('c=', '0x22fda6137013bac19754f78e8d9658498017f05a4b0814f2af97dc2c60fdc433d2949ea27b13337961ef3c4cf27452ad3c95')

因为这题的公钥n是由四个素数相乘得来的, 其中四个素数的值相差较小,或者较大,都会造成n更容易分解的结果,因为p、q、r、s十分接近,所以可以使用yafu直接分解

yafu分解

使用

factor(*)

括号中为要分解的数

解题脚本

import binascii
import gmpy2
p=1249559655343546956371276497499
q=1249559655343546956371276497489
r=1249559655343546956371276497537
s=1249559655343546956371276497423
e=0x10001
c=0x22fda6137013bac19754f78e8d9658498017f05a4b0814f2af97dc2c60fdc433d2949ea27b13337961ef3c4cf27452ad3c95
n=p*q*r*s

phi=(p-1)*(q-1)*(r-1)*(s-1)
d=gmpy2.invert(e,phi)
m=pow(c,d,n)
print(binascii.unhexlify(hex(m)[2:].strip("L")))

九、小明文攻击(e很小)

小明文攻击是基于低加密指数的,主要分成两种情况。

明文过小,导致明文的e次方仍然小于n

('n=', '0xad03794ef170d81aad370dccb7b92af7d174c10e0ae9ddc99b7dc5f93af6c65b51cc9c40941b002c7633caf8cd50e1b73aa942c8488d46c0032064306de388151814982b6d35b4e2a62dd647f527b31b4f826c36848dc52999574a8694460e1b59b4e96bda1341d3ba5f991f0000a56004d47681ecfd37a5e64bd198617f8dadL')
('e=', '0x3')
('c=', '0x10652cdf6f422470ea251f77L')

这种情况直接对密文e次开方,即可得到明文

解题脚本

import binascii
import gmpy2
n=0xad03794ef170d81aad370dccb7b92af7d174c10e0ae9ddc99b7dc5f93af6c65b51cc9c40941b002c7633caf8cd50e1b73aa942c8488d46c0032064306de388151814982b6d35b4e2a62dd647f527b31b4f826c36848dc52999574a8694460e1b59b4e96bda1341d3ba5f991f0000a56004d47681ecfd37a5e64bd198617f8dad
e=0x3
c=0x10652cdf6f422470ea251f77

m=gmpy2.iroot(c, 3)[0]
print(binascii.unhexlify(hex(m)[2:].strip("L")))

明文的三次方虽然比n大,但是大不了多少

('n=', '0x9683f5f8073b6cd9df96ee4dbe6629c7965e1edd2854afa113d80c44f5dfcf030a18c1b2ff40575fe8e222230d7bb5b6dd8c419c9d4bca1a7e84440a2a87f691e2c0c76caaab61492db143a61132f584ba874a98363c23e93218ac83d1dd715db6711009ceda2a31820bbacaf1b6171bbaa68d1be76fe986e4b4c1b66d10af25L')
('e=', '0x3')
('c=', '0x8541ee560f77d8fe536d48eab425b0505e86178e6ffefa1b0c37ccbfc6cb5f9a7727baeb3916356d6fce3205cd4e586a1cc407703b3f709e2011d7b66eaaeea9e381e595b4d515c433682eb3906d9870fadbffd0695c0168aa26447f7a049c260456f51e937ce75b74e5c3c2bd7709b981898016a3a18f15ae99763ff40805aaL')

爆破即可,每次加上一个n

完整脚本

import binascii
import gmpy2

n=0x9683f5f8073b6cd9df96ee4dbe6629c7965e1edd2854afa113d80c44f5dfcf030a18c1b2ff40575fe8e222230d7bb5b6dd8c419c9d4bca1a7e84440a2a87f691e2c0c76caaab61492db143a61132f584ba874a98363c23e93218ac83d1dd715db6711009ceda2a31820bbacaf1b6171bbaa68d1be76fe986e4b4c1b66d10af25
e=0x3
c=0x8541ee560f77d8fe536d48eab425b0505e86178e6ffefa1b0c37ccbfc6cb5f9a7727baeb3916356d6fce3205cd4e586a1cc407703b3f709e2011d7b66eaaeea9e381e595b4d515c433682eb3906d9870fadbffd0695c0168aa26447f7a049c260456f51e937ce75b74e5c3c2bd7709b981898016a3a18f15ae99763ff40805aa

i = 0
while 1:
res = gmpy2.iroot(c+i*n,3)
if(res[1] == True):
m=res[0]
print(binascii.unhexlify(hex(m)[2:].strip("L")))
break
print "i="+str(i)
i = i+1

十、低加密指数广播攻击(明文一样,多组加密)

如果选取的加密指数较低,并且使用了相同的加密指数给一个接受者的群发送相同的信息,那么可以进行广播攻击得到明文。 这个识别起来比较简单,一般来说都是给了三组加密的参数和明密文,其中题目很明确地能告诉你这三组的明文都是一样的,并且e都取了一个较小的数字。

('n=', '0x683fe30746a91545a45225e063e8dc64d26dbf98c75658a38a7c9dfd16dd38236c7aae7de5cbbf67056c9c57817fd3da79dc4955217f43caefde3b56a46acf5dL', 'e=', '0x7', 'c=', '0x673c72ace143441c07cba491074163c003f1a550eab56b1255e5ea9fa2bbd68fd6a9ccb48db9fd66d5dfc6a55c79cad3d9de53f700a1e3c2a29731dc56ba43cdL')
('n=', '0xa39292e6ad271bb6a2d1345940dfab8001a53d28bc7468f285d2873d784004c2653549c589dae91c6d8238977ff1c4bea4f17d424a0fc4d5587661cc7dde3a77L', 'e=', '0x7', 'c=', '0x6111357d180d966a495f38566ebe4ea51fa0d54159b22bbd443cde9387687d87c08638483b39221883453a5ad09f6a0e3726b214e8e333037d178a3d0f125343L')
('n=', '0x52c32366d84d34564a5fdc1650fc401c41ad2a63a2d6ef57c32c7887bb25da9d42c0acfb887c6334c938839c9a43aca93b2c7468915d1846576f92c342046d1fL', 'e=', '0x7', 'c=', '0x26cd2225c0229b6a3f1d1d685e53d114aa3d792737d040fbc14189336ac12fb780872792b0c0b259847badffd1427897ede0d60247aa5e79633f27ccb43e7cc2L')

脚本

import binascii,gmpy2

n = [
0x683fe30746a91545a45225e063e8dc64d26dbf98c75658a38a7c9dfd16dd38236c7aae7de5cbbf67056c9c57817fd3da79dc4955217f43caefde3b56a46acf5d,
0xa39292e6ad271bb6a2d1345940dfab8001a53d28bc7468f285d2873d784004c2653549c589dae91c6d8238977ff1c4bea4f17d424a0fc4d5587661cc7dde3a77,
0x52c32366d84d34564a5fdc1650fc401c41ad2a63a2d6ef57c32c7887bb25da9d42c0acfb887c6334c938839c9a43aca93b2c7468915d1846576f92c342046d1f
]
c = [
0x673c72ace143441c07cba491074163c003f1a550eab56b1255e5ea9fa2bbd68fd6a9ccb48db9fd66d5dfc6a55c79cad3d9de53f700a1e3c2a29731dc56ba43cd,
0x6111357d180d966a495f38566ebe4ea51fa0d54159b22bbd443cde9387687d87c08638483b39221883453a5ad09f6a0e3726b214e8e333037d178a3d0f125343,
0x26cd2225c0229b6a3f1d1d685e53d114aa3d792737d040fbc14189336ac12fb780872792b0c0b259847badffd1427897ede0d60247aa5e79633f27ccb43e7cc2
]
def CRT(mi, ai):
assert(reduce(gmpy2.gcd,mi)==1)
assert (isinstance(mi, list) and isinstance(ai, list))
M = reduce(lambda x, y: x * y, mi)
ai_ti_Mi = [a * (M / m) * gmpy2.invert(M / m, m) for (m, a) in zip(mi, ai)]
return reduce(lambda x, y: x + y, ai_ti_Mi) % M
e=0x7
m=gmpy2.iroot(CRT(n, c), e)[0]
print(binascii.unhexlify(hex(m)[2:].strip("L")))

11、低解密指数攻击(维纳攻击,e很大)

主要利用的是私钥d很小,表现形式一般是e很大

n = 9247606623523847772698953161616455664821867183571218056970099751301682205123115716089486799837447397925308887976775994817175994945760278197527909621793469
e = 27587468384672288862881213094354358587433516035212531881921186101712498639965289973292625430363076074737388345935775494312333025500409503290686394032069

脚本

github上有开源的攻击代码https://github.com/pablocelayes/rsa-wiener-attack

求解得到私钥d,在用e,n,d正常求解

def rational_to_contfrac (x, y):
'''
Converts a rational x/y fraction into
a list of partial quotients [a0, ..., an]
'''
a = x//y
if a * y == x:
return [a]
else:
pquotients = rational_to_contfrac(y, x - a * y)
pquotients.insert(0, a)
return pquotients
def convergents_from_contfrac(frac):    
'''
computes the list of convergents
using the list of partial quotients
'''
convs = [];
for i in range(len(frac)):
convs.append(contfrac_to_rational(frac[0:i]))
return convs

def contfrac_to_rational (frac):
'''Converts a finite continued fraction [a0, ..., an]
to an x/y rational.
'''
if len(frac) == 0:
return (0,1)
elif len(frac) == 1:
return (frac[0], 1)
else:
remainder = frac[1:len(frac)]
(num, denom) = contfrac_to_rational(remainder)
# fraction is now frac[0] + 1/(num/denom), which is
# frac[0] + denom/num.
return (frac[0] * num + denom, num)

def egcd(a,b):
'''
Extended Euclidean Algorithm
returns x, y, gcd(a,b) such that ax + by = gcd(a,b)
'''
u, u1 = 1, 0
v, v1 = 0, 1
while b:
q = a // b
u, u1 = u1, u - q * u1
v, v1 = v1, v - q * v1
a, b = b, a - q * b
return u, v, a

def gcd(a,b):
'''
2.8 times faster than egcd(a,b)[2]
'''
a,b=(b,a) if a<b else (a,b)
while b:
a,b=b,a%b
return a

def modInverse(e,n):
'''
d such that de = 1 (mod n)
e must be coprime to n
this is assumed to be true
'''
return egcd(e,n)[0]%n

def totient(p,q):
'''
Calculates the totient of pq
'''
return (p-1)*(q-1)

def bitlength(x):
'''
Calculates the bitlength of x
'''
assert x >= 0
n = 0
while x > 0:
n = n+1
x = x>>1
return n


def isqrt(n):
'''
Calculates the integer square root
for arbitrary large nonnegative integers
'''
if n < 0:
raise ValueError('square root not defined for negative numbers')

if n == 0:
return 0
a, b = divmod(bitlength(n), 2)
x = 2**(a+b)
while True:
y = (x + n//x)//2
if y >= x:
return x
x = y


def is_perfect_square(n):
'''
If n is a perfect square it returns sqrt(n),

otherwise returns -1
'''
h = n & 0xF; #last hexadecimal "digit"

if h > 9:
return -1 # return immediately in 6 cases out of 16.

# Take advantage of Boolean short-circuit evaluation
if ( h != 2 and h != 3 and h != 5 and h != 6 and h != 7 and h != 8 ):
# take square root if you must
t = isqrt(n)
if t*t == n:
return t
else:
return -1

return -1

def hack_RSA(e,n):
frac = rational_to_contfrac(e, n)
convergents = convergents_from_contfrac(frac)

for (k,d) in convergents:
#check if d is actually the key
if k!=0 and (e*d-1)%k == 0:
phi = (e*d-1)//k
s = n - phi + 1
# check if the equation x^2 - s*x + n = 0
# has integer roots
discr = s*s - 4*n
if(discr>=0):
t = is_perfect_square(discr)
if t!=-1 and (s+t)%2==0:
print("\nHacked!")
return d

def main():
n = 9247606623523847772698953161616455664821867183571218056970099751301682205123115716089486799837447397925308887976775994817175994945760278197527909621793469
e = 27587468384672288862881213094354358587433516035212531881921186101712498639965289973292625430363076074737388345935775494312333025500409503290686394032069
d=hack_RSA(e,n)
print ("d=")
print (d)

if __name__ == '__main__':
main()

脚本二:

import ContinuedFractions, Arithmetic, RSAvulnerableKeyGenerator


def hack_RSA(e,n):
'''
Finds d knowing (e,n)
applying the Wiener continued fraction attack
'''
frac = ContinuedFractions.rational_to_contfrac(e, n)
convergents = ContinuedFractions.convergents_from_contfrac(frac)

for (k,d) in convergents:

#check if d is actually the key
if k!=0 and (e*d-1)%k == 0:
phi = (e*d-1)//k
s = n - phi + 1
# check if the equation x^2 - s*x + n = 0
# has integer roots
discr = s*s - 4*n
if(discr>=0):
t = Arithmetic.is_perfect_square(discr)
if t!=-1 and (s+t)%2==0:
print("Hacked!")
return d


def main():
n = 18462906143035540993814517057095163128283817787230664517838986634801013392767711846485937113330072380038567780269061919808605648774959966319179757205173372523095161810322702620470126948608656351385935375720727519176775110406692586449768317335765421930399299578230419560189633716571287406027463911286833332787737419540756653612611709926058384814812935770145166745335145087323852211057246522872067333040272572190577262813212787729743380140592301701193918348912668992966189995193003441075512789075254845693251194059243188025613215624222354768281910170062917473229700929505219308776883069798326608764552258161920559190481
e = 14065324093316017945695720258347429532521523200228598193322667338820770590989154977786981894794588594064536009186732255775035804405327706425255296803855527639374329558376563095664859692148197185703687276097309462020144376262777557533944519562049109221719648126706993033163993490190085491702629251352329396471456129542825658446009162968346786594848548139595669836329358788165100849817671092568134531593182392252696719165573226130084180843486935720502707239300540428534291779101061922644007823991998086019198292035392258539304441052201138357754863223836486846439513422901513872417295274198920142360883876210212927825007
d=hack_RSA(e,n)
print ("d=")
print (d)

12、共模攻击(e不同n相同m相同)

识别:若干次加密,e不同,n相同,m相同。就可以在不分解n和求d的前提下,解出明文m。

('n=', '0xc42b9d872f8ecf90b4832199771bbd8d9bafb213747d905a644baa42144f316dc224e7914f8a5d361eeab930adf5ea7fbe1416e58b3fae34ca7e6d2a3145e04af02cf5a4f14539fff032bccd7bb9cf85b12d7d36dbc870b57e11aa5704304d08eff685fe4ccd707e308dfac6a1167d79199ffa9396c4f2efb4770256253d1407L')
('e1=', '0xc21000af014a98b2455dec479L')
('e2=', '0x9935842d63b75899ddd81b467L')
('c1=', '0xc0204d515a275954bbc8390d80efa1cca3bb29724ed7ba18f861913e28b6400298603b920d484284ad9c1c175587496300355395cb06b32603e779ec9b97f7eea6bb0de42c54f7f60e6e1171496efef0de8048e6074658084d080bd346db426888084e6dd45cb89b283247443de75328d47f9bd64adbd9be86043c6d13c7ed41L')
('c2=', '0xc4053ed3455c15174e5699ab6eb09b830a98b79e92e7518b713e828faca4d6d02306a65a8ec70893ca8a56943a7074e6de8649f099164cad33b8ca93fce1656f0712b990cce06642250c52a80d19c2afa94a4e158139028ac89c811e6be8d7b6984b6c1edcdd752e4955e3a6f1ab38cf2edb4474a80e03d6c313eb8ebf4e98ccL')

推导过程

首先,两个加密指数互质:
gcd(e1,e2)=1

即存在s1、s2使得:
s1+*e1+s2*e2=1

又因为:
c1≡m^e1 mod n
c2≡m mod n

代入化简可得:
c1^s1 * c2^s2 ≡ m mod n

即可求出明文

公式的python实现如下

def egcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, y, x = egcd(b % a, a)
return (g, x - (b // a) * y, y)
def modinv(a, m):
g, x, y = egcd(a, m)
if g != 1:
raise Exception('modular inverse does not exist')
else:
return x % m
s = egcd(e1, e2)
s1 = s[1]
s2 = s[2]
if s1<0:
s1 = - s1
c1 = modinv(c1, n)
elif s2<0:
s2 = - s2
c2 = modinv(c2, n)
m=(pow(c1,s1,n)*pow(c2,s2,n)) % n

脚本

import sys
import binascii
sys.setrecursionlimit(1000000)
def egcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, y, x = egcd(b % a, a)
return (g, x - (b // a) * y, y)
def modinv(a, m):
g, x, y = egcd(a, m)
if g != 1:
raise Exception('modular inverse does not exist')
else:
return x % m

c1=0xc0204d515a275954bbc8390d80efa1cca3bb29724ed7ba18f861913e28b6400298603b920d484284ad9c1c175587496300355395cb06b32603e779ec9b97f7eea6bb0de42c54f7f60e6e1171496efef0de8048e6074658084d080bd346db426888084e6dd45cb89b283247443de75328d47f9bd64adbd9be86043c6d13c7ed41
n=0xc42b9d872f8ecf90b4832199771bbd8d9bafb213747d905a644baa42144f316dc224e7914f8a5d361eeab930adf5ea7fbe1416e58b3fae34ca7e6d2a3145e04af02cf5a4f14539fff032bccd7bb9cf85b12d7d36dbc870b57e11aa5704304d08eff685fe4ccd707e308dfac6a1167d79199ffa9396c4f2efb4770256253d1407
e1=0xc21000af014a98b2455dec479
c2=0xc4053ed3455c15174e5699ab6eb09b830a98b79e92e7518b713e828faca4d6d02306a65a8ec70893ca8a56943a7074e6de8649f099164cad33b8ca93fce1656f0712b990cce06642250c52a80d19c2afa94a4e158139028ac89c811e6be8d7b6984b6c1edcdd752e4955e3a6f1ab38cf2edb4474a80e03d6c313eb8ebf4e98cc
e2=0x9935842d63b75899ddd81b467

s = egcd(e1, e2)
s1 = s[1]
s2 = s[2]

if s1<0:
s1 = - s1
c1 = modinv(c1, n)
elif s2<0:
s2 = - s2
c2 = modinv(c2, n)
m=(pow(c1,s1,n)*pow(c2,s2,n)) % n
print(m)
print (binascii.unhexlify(hex(m)[2:].strip("L")))
#python2
from gmpy2 import invert
def gongmogongji(n, c1, c2, e1, e2):
def egcd(a, b):
if b == 0:
return a, 0
else:
x, y = egcd(b, a % b)
return y, x - (a // b) * y
s = egcd(e1, e2)
s1 = s[0]
s2 = s[1]
if s1 < 0:
s1 = - s1
c1 = invert(c1, n)
elif s2 < 0:
s2 = - s2
c2 = invert(c2, n)
m = pow(c1, s1, n) * pow(c2, s2, n) % n
return m

n= 6266565720726907265997241358331585417095726146341989755538017122981360742813498401533594757088796536341941659691259323065631249
e1= 773
e2= 839
c1= 3453520592723443935451151545245025864232388871721682326408915024349804062041976702364728660682912396903968193981131553111537349
c2= 5672818026816293344070119332536629619457163570036305296869053532293105379690793386019065754465292867769521736414170803238309535

result = gongmogongji(n, c1, c2, e1, e2)
print(result)
#1021089710312311910410111011910111610410511010710511610511511211111511510598108101125
#flag=hex(result)[2:].decode('hex')
result=str(result)
flag=""
i=0
while i < len(result):
if result[i]=='1':
c=chr(int(result[i:i+3]))
i+=3
else:
c=chr(int(result[i:i+2]))
i+=2
flag+=c
print(flag)

13、Stereotyped messages攻击(给了m的高位)

('n=', '0xf85539597ee444f3fcad07142ecf6eaae5320301244a7cedc50b2beed7e60ffa11ccf28c1a590fb81346fb16b0cecd046a1f63f0bf93185c109b8c93068ec02fL')
('e=', '0x3')
('c=', '0xa75c3c8a19ed9c911d851917e442a8e7b425e4b7f92205ca532a2ab0f5abe6cb86d164cc61374877f9e88e7bca606b43c79f1d59deadfcc68c3db52e5fc42f0L')
('m=', '0x666c6167206973203a746573743132313131313131313131313133343536000000000000000000')

给了明文的高位,可以尝试使用Stereotyped messages攻击 我们需要使用sage实现该算法 可以安装SageMath 或者在线网站https://sagecell.sagemath.org/

脚本

e = 0x3
b=0x666c6167206973203a746573743132313131313131313131313133343536000000000000000000
n = 0xf85539597ee444f3fcad07142ecf6eaae5320301244a7cedc50b2beed7e60ffa11ccf28c1a590fb81346fb16b0cecd046a1f63f0bf93185c109b8c93068ec02f
c=0xa75c3c8a19ed9c911d851917e442a8e7b425e4b7f92205ca532a2ab0f5abe6cb86d164cc61374877f9e88e7bca606b43c79f1d59deadfcc68c3db52e5fc42f0
kbits=72
PR.<x> = PolynomialRing(Zmod(n))
f = (x + b)^e-c
x0 = f.small_roots(X=2^kbits, beta=1)[0]
print "x: %s" %hex(int(x0))

可以求解出m的低位

14、Factoring with high&bits known攻击(给出p的高位)

('n=', '0xb50193dc86a450971312d72cc8794a1d3f4977bcd1584a20c31350ac70365644074c0fb50b090f38d39beb366babd784d6555d6de3be54dad3e87a93a703abddL')
('p=', '0xd7e990dec6585656512c841ac932edaf048184bac5ebf9967000000000000000L')
('e=', '0x3')
('c=', '0x428a95e5712e8aa22f6d4c39ee5ec85f422608c2f141abf22799c1860a5e343068ab55dfb5c99a7085714f4ce8950e85d8ed0a11fce3516cf66a641dca8321eeL')

题目给出p的高位

脚本

该算法依赖于Coppersmith partial information attack算法, sage实现该算法

p = 0xd7e990dec6585656512c841ac932edaf048184bac5ebf9967000000000000000
n = 0xb50193dc86a450971312d72cc8794a1d3f4977bcd1584a20c31350ac70365644074c0fb50b090f38d39beb366babd784d6555d6de3be54dad3e87a93a703abdd

kbits = 60
PR.<x> = PolynomialRing(Zmod(n))
f = x + p
x0 = f.small_roots(X=2^kbits, beta=0.4)[0]
print "x: %s" %hex(int(x0))
p = p+x0
print "p: ", hex(int(p))
assert n % p == 0
q = n/int(p)
print "q: ", hex(int(q))

其中kbit是未知的p的低位位数 x0为求出来的p低位

15、Partial Key Exposure Attack(给私钥d的低位)

('n=', '0x56a8f8cbc72ff68e67c72718bd16d7e98150aea08780f6c4f532d20ca3c92a0fb07c959e008cbcbeac744854bc4203eb9b2996e9cf630133bc38952a2c17c27dL')
('d&((1<<256)-1)=', '0x594b6c9631c4987f588399f22466b51fc48ed449b8aae0309b5736ef0b741893')
('e=', '0x3')
('c=', '0xca2841cbc52c8307e0f2c48f8b14bc0846ece4111453362e6aee4b81f44f2a14df1c58836d4937f3b868148140ee36e9a7e910dd84c2dc869ead47711412038L')

题目给出一组公钥n,e以及加密后的密文 给私钥d的低位

脚本

记N=pq为n比特RSA模数,e和d分别为加解密指数,ν为p和q低位相同的比特数,即p≡qmod2ν且p≠qmod2v+1. 1998年,Boneh、Durfee和Frankel首先提出对RSA的部分密钥泄露攻击:当ν=1,e较小且d的低n/4比特已知时,存在关于n的多项式时间算法分解N. 2001年R.Steinfeld和Y.Zheng指出,当ν较大时,对RSA的部分密钥泄露攻击实际不可行.

当ν和e均较小且解密指数d的低n/4比特已知时,存在关于n和2v的多项式时间算法分解N.

def partial_p(p0, kbits, n):
PR.<x> = PolynomialRing(Zmod(n))
nbits = n.nbits()

f = 2^kbits*x + p0
f = f.monic()
roots = f.small_roots(X=2^(nbits//2-kbits), beta=0.3)  # find root < 2^(nbits//2-kbits) with factor >= n^0.3
if roots:
x0 = roots[0]
p = gcd(2^kbits*x0 + p0, n)
return ZZ(p)

def find_p(d0, kbits, e, n):
X = var('X')

for k in xrange(1, e+1):
results = solve_mod([e*d0*X - k*X*(n-X+1) + k*n == X], 2^kbits)
for x in results:
p0 = ZZ(x[0])
p = partial_p(p0, kbits, n)
if p:
return p


if __name__ == '__main__':
n =0x56a8f8cbc72ff68e67c72718bd16d7e98150aea08780f6c4f532d20ca3c92a0fb07c959e008cbcbeac744854bc4203eb9b2996e9cf630133bc38952a2c17c27d
e = 0x3
d = 0x594b6c9631c4987f588399f22466b51fc48ed449b8aae0309b5736ef0b741893
beta = 0.5
epsilon = beta^2/7

nbits = n.nbits()
kbits = 255
d0 = d & (2^kbits-1)
print "lower %d bits (of %d bits) is given" % (kbits, nbits)

p = find_p(d0, kbits, e, n)
print "found p: %d" % p
q = n//p
print hex(d)
print hex(inverse_mod(e, (p-1)*(q-1)))

kbits是私钥d泄露的位数255

Padding Attack

('n=', '0xb33aebb1834845f959e05da639776d08a344abf098080dc5de04f4cbf4a1001dL')
('e=', '0x3')
('c1=pow(hex_flag,e,n)', '0x3aa5058306947ff46b0107b062d75cf9e497cdb1f120d02eaeca30f76492c550L')
('c2=pow(hex_flag+1,e,n)', '0x6a645739f25380a5e5b263ff5e5b4b9324381f6408a11fdaab0488209145fb3eL')

原理参考 https://www.anquanke.com/post/id/158944

意思很简单 1.pow(mm, e) != pow(mm, e, n) 2.利用rsa加密m+padding 值得注意的是,e=3,padding可控 那么我们拥有的条件只有 n,e,c,padding 所以这里的攻击肯定是要从可控的padding入手了

脚本

import gmpy
def getM2(a,b,c1,c2,n,e):
a3 = pow(a,e,n)
b3 = pow(b,e,n)
first = c1-a3*c2+2*b3
first = first % n
second = e*b*(a3*c2-b3)
second = second % n
third = second*gmpy.invert(first,n)
third = third % n
fourth = (third+b)*gmpy.invert(a,n)
return fourth % n
e=0x3
a=1
b=-1
c1=0x3aa5058306947ff46b0107b062d75cf9e497cdb1f120d02eaeca30f76492c550
c2=0x6a645739f25380a5e5b263ff5e5b4b9324381f6408a11fdaab0488209145fb3e
padding2=1
n=0xb33aebb1834845f959e05da639776d08a344abf098080dc5de04f4cbf4a1001d
m = getM2(a,b,c1,c2,n,e)-padding2
print hex(m)

通过上面介绍的那篇文章的推导过程我们可以知道 a等于1 b=padding1-padding2 这边我们的padding1是第一个加密的明文与明文的差,本题是0 padding2是第二个加密的明文与明文的差,本题是1 所以b是-1 我们这边是用的那篇文章的Related Message Attack

17、RSA LSB Oracle Attack

适用情况:可以选择密文并泄露最低位。
在一次RSA加密中,明文为m,模数为n,加密指数为e,密文为c。
我们可以构造出c'=((2^e)*c)%n=((2^e)*(m^e))%n=((2*m)^e)%n, 因为m的两倍可能大于n,所以经过解密得到的明文是 m'=(2*m)%n 。
我们还能够知道 m' 的最低位lsb 是1还是0。
因为n是奇数,而2*m是偶数,所以如果lsb 是0,说明(2*m)%n 是偶数,没有超过n,即m<n/2.0,反之则m>n/2.0 。
举个例子就能明白2%3=2 是偶数,而4%3=1 是奇数。
以此类推,构造密文c"=(4^e)*c)%n 使其解密后为m"=(4*m)%n ,判断m" 的奇偶性可以知道m 和 n/4 的大小关系。
所以我们就有了一个二分算法,可以在对数时间内将m的范围逼近到一个足够狭窄的空间。

脚本

def brute_flag(encrypted_flag, n, e):

flag_count = n_count = 1
flag_lower_bound = 0
flag_upper_bound = n
ciphertext = encrypted_flag
mult = 1
while flag_upper_bound > flag_lower_bound + 1:
sh.recvuntil("input your option:")
sh.sendline("D")
ciphertext = (ciphertext * pow(2, e, n)) % n
flag_count *= 2
n_count = n_count * 2 - 1

print("bit = %d" % mult)
mult += 1


sh.recvuntil("Your encrypted message:")
sh.sendline(str(ciphertext))

data=sh.recvline()[:-1]
if(data=='The plain of your decrypted message is even!'):
flag_upper_bound = n * n_count / flag_count
else:
flag_lower_bound = n * n_count / flag_count
n_count += 1
return flag_upper_bound

18、多明文(n,e,m1,m2)

方法1:

题目:

import hashlib
import sympy
from Crypto.Util.number import *
flag = 'GWHT{******}'
secret = '******'
assert(len(flag) == 38)
half = len(flag) / 2
flag1 = flag[:half]
flag2 = flag[half:]
secret_num = getPrime(1024) * bytes_to_long(secret)
p = sympy.nextprime(secret_num)
q = sympy.nextprime(p)
N = p * q
e = 0x10001
F1 = bytes_to_long(flag1)
F2 = bytes_to_long(flag2)
c1 = F1 + F2
c2 = pow(F1, 3) + pow(F2, 3)
assert(c2 < N)
m1 = pow(c1, e, N)
m2 = pow(c2, e, N)
output = open('secret', 'w')
output.write('N=' + str(N) + '\n')
output.write('m1=' + str(m1) + '\n')
output.write('m2=' + str(m2) + '\n')
output.close()
N=636585149594574746909030160182690866222909256464847291783000651837227921337237899651287943597773270944384034858925295744880727101606841413640006527614873110651410155893776548737823152943797884729130149758279127430044739254000426610922834573094957082589539445610828279428814524313491262061930512829074466232633130599104490893572093943832740301809630847541592548921200288222432789208650949937638303429456468889100192613859073752923812454212239908948930178355331390933536771065791817643978763045030833712326162883810638120029378337092938662174119747687899484603628344079493556601422498405360731958162719296160584042671057160241284852522913676264596201906163
m1=90009974341452243216986938028371257528604943208941176518717463554774967878152694586469377765296113165659498726012712288670458884373971419842750929287658640266219686646956929872115782173093979742958745121671928568709468526098715927189829600497283118051641107305128852697032053368115181216069626606165503465125725204875578701237789292966211824002761481815276666236869005129138862782476859103086726091860497614883282949955023222414333243193268564781621699870412557822404381213804026685831221430728290755597819259339616650158674713248841654338515199405532003173732520457813901170264713085107077001478083341339002069870585378257051150217511755761491021553239
m2=487443985757405173426628188375657117604235507936967522993257972108872283698305238454465723214226871414276788912058186197039821242912736742824080627680971802511206914394672159240206910735850651999316100014691067295708138639363203596244693995562780286637116394738250774129759021080197323724805414668042318806010652814405078769738548913675466181551005527065309515364950610137206393257148357659666687091662749848560225453826362271704292692847596339533229088038820532086109421158575841077601268713175097874083536249006018948789413238783922845633494023608865256071962856581229890043896939025613600564283391329331452199062858930374565991634191495137939574539546

yafu分解出pq,可解方程

import gmpy2
p=797862863902421984951231350430312260517773269684958456342860983236184129602390919026048496119757187702076499551310794177917920137646835888862706126924088411570997141257159563952725882214181185531209186972351469946269508511312863779123205322378452194261217016552527754513215520329499967108196968833163329724620251096080377748737
q=797862863902421984951231350430312260517773269684958456342860983236184129602390919026048496119757187702076499551310794177917920137646835888862706126924088411570997141257159563952725882214181185531209186972351469946269508511312863779123205322378452194261217016552527754513215520329499967108196968833163329724620251096080377747699
e=0x10001
c=90009974341452243216986938028371257528604943208941176518717463554774967878152694586469377765296113165659498726012712288670458884373971419842750929287658640266219686646956929872115782173093979742958745121671928568709468526098715927189829600497283118051641107305128852697032053368115181216069626606165503465125725204875578701237789292966211824002761481815276666236869005129138862782476859103086726091860497614883282949955023222414333243193268564781621699870412557822404381213804026685831221430728290755597819259339616650158674713248841654338515199405532003173732520457813901170264713085107077001478083341339002069870585378257051150217511755761491021553239
n=p*q
phin=(p-1)*(q-1)
d=gmpy2.invert(e,phin)
m=pow(c,d,n)
print m

接下来解方程:

from z3 import *
s = Solver()
flag1 = Int('flag1')
flag2 = Int('flag2')
s.add(flag1 + flag2 == 2732509502629189160482346120094198557857912754)
s.add(pow(flag1,3)+pow(flag2,3) ==5514544075236012543362261483183657422998274674127032311399076783844902086865451355210243586349132992563718009577051164928513093068525554)
if s.check() == sat:
print s.model()
print hex(1590956290598033029862556611630426044507841845)[2:-1].decode('hex')+hex(1141553212031156130619789508463772513350070909)[2:-1].decode('hex')  

方法二脚本一把梭

#python2
import gmpy2
import sympy
N=gmpy2.mpz(636585149594574746909030160182690866222909256464847291783000651837227921337237899651287943597773270944384034858925295744880727101606841413640006527614873110651410155893776548737823152943797884729130149758279127430044739254000426610922834573094957082589539445610828279428814524313491262061930512829074466232633130599104490893572093943832740301809630847541592548921200288222432789208650949937638303429456468889100192613859073752923812454212239908948930178355331390933536771065791817643978763045030833712326162883810638120029378337092938662174119747687899484603628344079493556601422498405360731958162719296160584042671057160241284852522913676264596201906163)
e = 0x10001
m1=90009974341452243216986938028371257528604943208941176518717463554774967878152694586469377765296113165659498726012712288670458884373971419842750929287658640266219686646956929872115782173093979742958745121671928568709468526098715927189829600497283118051641107305128852697032053368115181216069626606165503465125725204875578701237789292966211824002761481815276666236869005129138862782476859103086726091860497614883282949955023222414333243193268564781621699870412557822404381213804026685831221430728290755597819259339616650158674713248841654338515199405532003173732520457813901170264713085107077001478083341339002069870585378257051150217511755761491021553239
m2=487443985757405173426628188375657117604235507936967522993257972108872283698305238454465723214226871414276788912058186197039821242912736742824080627680971802511206914394672159240206910735850651999316100014691067295708138639363203596244693995562780286637116394738250774129759021080197323724805414668042318806010652814405078769738548913675466181551005527065309515364950610137206393257148357659666687091662749848560225453826362271704292692847596339533229088038820532086109421158575841077601268713175097874083536249006018948789413238783922845633494023608865256071962856581229890043896939025613600564283391329331452199062858930374565991634191495137939574539546
n2=gmpy2.iroot(N,2)[0]
p=sympy.nextprime(n2)
q=N//p
phi=(p-1)*(q-1)
d=gmpy2.invert(e,phi)
c1=pow(m1,d,N)
c2=pow(m2,d,N)

a=3*c1
b=-3*pow(c1,2)
c=pow(c1,3)-c2
delta=gmpy2.iroot(pow(b,2)-4*a*c,2)[0]
F2=(-b+delta)//(2*a)
F1=c1-F2

print(hex(F2)[2:].decode('hex')+hex(F1)[2:].decode('hex'))

19、wilson(威尔逊定理)necA1A2B1B2

题目:

import sympy
import random

def myGetPrime():
A= getPrime(513)
print(A)
B=A-random.randint(1e3,1e5)
print(B)
return sympy.nextPrime((B!)%A)
p=myGetPrime()
#A1=21856963452461630437348278434191434000066076750419027493852463513469865262064340836613831066602300959772632397773487317560339056658299954464169264467234407
#B1=21856963452461630437348278434191434000066076750419027493852463513469865262064340836613831066602300959772632397773487317560339056658299954464169264467140596

q=myGetPrime()
#A2=16466113115839228119767887899308820025749260933863446888224167169857612178664139545726340867406790754560227516013796269941438076818194617030304851858418927
#B2=16466113115839228119767887899308820025749260933863446888224167169857612178664139545726340867406790754560227516013796269941438076818194617030304851858351026

r=myGetPrime()

n=p*q*r
#n=85492663786275292159831603391083876175149354309327673008716627650718160585639723100793347534649628330416631255660901307533909900431413447524262332232659153047067908693481947121069070451562822417357656432171870951184673132554213690123308042697361969986360375060954702920656364144154145812838558365334172935931441424096270206140691814662318562696925767991937369782627908408239087358033165410020690152067715711112732252038588432896758405898709010342467882264362733
c=pow(flag,e,n)
#e=0x1001
#c=75700883021669577739329316795450706204502635802310731477156998834710820770245219468703245302009998932067080383977560299708060476222089630209972629755965140317526034680452483360917378812244365884527186056341888615564335560765053550155758362271622330017433403027261127561225585912484777829588501213961110690451987625502701331485141639684356427316905122995759825241133872734362716041819819948645662803292418802204430874521342108413623635150475963121220095236776428
#so,what is the flag?

这道题,我们可以看到在p和q的生成算法中有用到!阶乘,于是我们可以联想到wilson定理 即:当且仅当p为素数时:( p -1 )! ≡ -1 ( mod p ) 于是我们就可以通过invert函数,一步步将A推成B,这样就可以很快的解除p,q的值,得到flag

脚本1:

#python2
import gmpy2
import sympy
def wilson(A,B):
t=A-B-1
res=-1
k=A-1
for i in range(t):
res=(res*gmpy2.invert(k,A))%A
k=k-1
if(res<0):
return res+A
else:
return res
n=85492663786275292159831603391083876175149354309327673008716627650718160585639723100793347534649628330416631255660901307533909900431413447524262332232659153047067908693481947121069070451562822417357656432171870951184673132554213690123308042697361969986360375060954702920656364144154145812838558365334172935931441424096270206140691814662318562696925767991937369782627908408239087358033165410020690152067715711112732252038588432896758405898709010342467882264362733
e=0x1001
c=75700883021669577739329316795450706204502635802310731477156998834710820770245219468703245302009998932067080383977560299708060476222089630209972629755965140317526034680452483360917378812244365884527186056341888615564335560765053550155758362271622330017433403027261127561225585912484777829588501213961110690451987625502701331485141639684356427316905122995759825241133872734362716041819819948645662803292418802204430874521342108413623635150475963121220095236776428

A2=16466113115839228119767887899308820025749260933863446888224167169857612178664139545726340867406790754560227516013796269941438076818194617030304851858418927
B2=16466113115839228119767887899308820025749260933863446888224167169857612178664139545726340867406790754560227516013796269941438076818194617030304851858351026
A1=21856963452461630437348278434191434000066076750419027493852463513469865262064340836613831066602300959772632397773487317560339056658299954464169264467234407
B1=21856963452461630437348278434191434000066076750419027493852463513469865262064340836613831066602300959772632397773487317560339056658299954464169264467140596
p=sympy.nextprime(wilson(A1,B1))
q=sympy.nextprime(wilson(A2,B2))
print(p,q)
#(1276519424397216455160791032620569392845781005616561979809403385593761615670426423039762716291920053306063214548359656555809123127361539475238435285654851L, 13242175493583584108411324143773780862426183382017753129633978933213674770487765387985282956574197274056162861584407275172775868763712231230219112670015751L)
r=n//p//q
phi=(p-1)*(q-1)*(r-1)
d=gmpy2.invert(e,phi)
m=pow(c,d,n)
flag=hex(m)[2:].decode('hex')
print(flag)
#RoarCTF{wm-CongrAtu1ation4-1t4-ju4t-A-bAby-R4A}

脚本2:

import sympy
import gmpy2
def mydecrypt(A,B):
ans=1
temp=gmpy2.powmod(-1,1,A)
#print(temp)
for i in range(B+1,A):
ans=(ans*gmpy2.invert(i,A))%A
return (ans*temp)%A
A1=21856963452461630437348278434191434000066076750419027493852463513469865262064340836613831066602300959772632397773487317560339056658299954464169264467234407
B1=21856963452461630437348278434191434000066076750419027493852463513469865262064340836613831066602300959772632397773487317560339056658299954464169264467140596
A2=16466113115839228119767887899308820025749260933863446888224167169857612178664139545726340867406790754560227516013796269941438076818194617030304851858418927
B2=16466113115839228119767887899308820025749260933863446888224167169857612178664139545726340867406790754560227516013796269941438076818194617030304851858351026
e=0x1001
c=75700883021669577739329316795450706204502635802310731477156998834710820770245219468703245302009998932067080383977560299708060476222089630209972629755965140317526034680452483360917378812244365884527186056341888615564335560765053550155758362271622330017433403027261127561225585912484777829588501213961110690451987625502701331485141639684356427316905122995759825241133872734362716041819819948645662803292418802204430874521342108413623635150475963121220095236776428
n=85492663786275292159831603391083876175149354309327673008716627650718160585639723100793347534649628330416631255660901307533909900431413447524262332232659153047067908693481947121069070451562822417357656432171870951184673132554213690123308042697361969986360375060954702920656364144154145812838558365334172935931441424096270206140691814662318562696925767991937369782627908408239087358033165410020690152067715711112732252038588432896758405898709010342467882264362733
p=sympy.nextprime(mydecrypt(A1,B1))
q=sympy.nextprime(mydecrypt(A2,B2))
r=n//p//q
phi=(p-1)*(q-1)*(r-1)
d=gmpy2.invert(e,phi)
flag=gmpy2.powmod(c,d,n)
import binascii
print(binascii.unhexlify(hex(flag)[2:]))

20、gcd找最大公约数

n1 = 20474918894051778533305262345601880928088284471121823754049725354072477155873778848055073843345820697886641086842612486541250183965966001591342031562953561793332341641334302847996108417466360688139866505179689516589305636902137210185624650854906780037204412206309949199080005576922775773722438863762117750429327585792093447423980002401200613302943834212820909269713876683465817369158585822294675056978970612202885426436071950214538262921077409076160417436699836138801162621314845608796870206834704116707763169847387223307828908570944984416973019427529790029089766264949078038669523465243837675263858062854739083634207
c = 974463908243330865728978769213595400782053398596897741316275722596415018912929508637393850919224969271766388710025195039896961956062895570062146947736340342927974992616678893372744261954172873490878805483241196345881721164078651156067119957816422768524442025688079462656755605982104174001635345874022133045402344010045961111720151990412034477755851802769069309069018738541854130183692204758761427121279982002993939745343695671900015296790637464880337375511536424796890996526681200633086841036320395847725935744757993013352804650575068136129295591306569213300156333650910795946800820067494143364885842896291126137320

n2 = 20918819960648891349438263046954902210959146407860980742165930253781318759285692492511475263234242002509419079545644051755251311392635763412553499744506421566074721268822337321637265942226790343839856182100575539845358877493718334237585821263388181126545189723429262149630651289446553402190531135520836104217160268349688525168375213462570213612845898989694324269410202496871688649978370284661017399056903931840656757330859626183773396574056413017367606446540199973155630466239453637232936904063706551160650295031273385619470740593510267285957905801566362502262757750629162937373721291789527659531499435235261620309759
c = 15819636201971185538694880505120469332582151856714070824521803121848292387556864177196229718923770810072104155432038682511434979353089791861087415144087855679134383396897817458726543883093567600325204596156649305930352575274039425470836355002691145864435755333821133969266951545158052745938252574301327696822347115053614052423028835532509220641378760800693351542633860702225772638930501021571415907348128269681224178300248272689705308911282208685459668200507057183420662959113956077584781737983254788703048275698921427029884282557468334399677849962342196140864403989162117738206246183665814938783122909930082802031855

n3 = 25033254625906757272369609119214202033162128625171246436639570615263949157363273213121556825878737923265290579551873824374870957467163989542063489416636713654642486717219231225074115269684119428086352535471683359486248203644461465935500517901513233739152882943010177276545128308412934555830087776128355125932914846459470221102007666912211992310538890654396487111705385730502843589727289829692152177134753098649781412247065660637826282055169991824099110916576856188876975621376606634258927784025787142263367152947108720757222446686415627479703666031871635656314282727051189190889008763055811680040315277078928068816491
c = 4185308529416874005831230781014092407198451385955677399668501833902623478395669279404883990725184332709152443372583701076198786635291739356770857286702107156730020004358955622511061410661058982622055199736820808203841446796305284394651714430918690389486920560834672316158146453183789412140939029029324756035358081754426645160033262924330248675216108270980157049705488620263485129480952814764002865280019185127662449318324279383277766416258142275143923532168798413011028271543085249029048997452212503111742302302065401051458066585395360468447460658672952851643547193822775218387853623453638025492389122204507555908862

n4 = 21206968097314131007183427944486801953583151151443627943113736996776787181111063957960698092696800555044199156765677935373149598221184792286812213294617749834607696302116136745662816658117055427803315230042700695125718401646810484873064775005221089174056824724922160855810527236751389605017579545235876864998419873065217294820244730785120525126565815560229001887622837549118168081685183371092395128598125004730268910276024806808565802081366898904032509920453785997056150497645234925528883879419642189109649009132381586673390027614766605038951015853086721168018787523459264932165046816881682774229243688581614306480751
c = 4521038011044758441891128468467233088493885750850588985708519911154778090597136126150289041893454126674468141393472662337350361712212694867311622970440707727941113263832357173141775855227973742571088974593476302084111770625764222838366277559560887042948859892138551472680654517814916609279748365580610712259856677740518477086531592233107175470068291903607505799432931989663707477017904611426213770238397005743730386080031955694158466558475599751940245039167629126576784024482348452868313417471542956778285567779435940267140679906686531862467627238401003459101637191297209422470388121802536569761414457618258343550613

n5 = 22822039733049388110936778173014765663663303811791283234361230649775805923902173438553927805407463106104699773994158375704033093471761387799852168337898526980521753614307899669015931387819927421875316304591521901592823814417756447695701045846773508629371397013053684553042185725059996791532391626429712416994990889693732805181947970071429309599614973772736556299404246424791660679253884940021728846906344198854779191951739719342908761330661910477119933428550774242910420952496929605686154799487839923424336353747442153571678064520763149793294360787821751703543288696726923909670396821551053048035619499706391118145067
c = 15406498580761780108625891878008526815145372096234083936681442225155097299264808624358826686906535594853622687379268969468433072388149786607395396424104318820879443743112358706546753935215756078345959375299650718555759698887852318017597503074317356745122514481807843745626429797861463012940172797612589031686718185390345389295851075279278516147076602270178540690147808314172798987497259330037810328523464851895621851859027823681655934104713689539848047163088666896473665500158179046196538210778897730209572708430067658411755959866033531700460551556380993982706171848970460224304996455600503982223448904878212849412357

n6 = 21574139855341432908474064784318462018475296809327285532337706940126942575349507668289214078026102682252713757703081553093108823214063791518482289846780197329821139507974763780260290309600884920811959842925540583967085670848765317877441480914852329276375776405689784571404635852204097622600656222714808541872252335877037561388406257181715278766652824786376262249274960467193961956690974853679795249158751078422296580367506219719738762159965958877806187461070689071290948181949561254144310776943334859775121650186245846031720507944987838489723127897223416802436021278671237227993686791944711422345000479751187704426369
c = 20366856150710305124583065375297661819795242238376485264951185336996083744604593418983336285185491197426018595031444652123288461491879021096028203694136683203441692987069563513026001861435722117985559909692670907347563594578265880806540396777223906955491026286843168637367593400342814725694366078337030937104035993569672959361347287894143027186846856772983058328919716702982222142848848117768499996617588305301483085428547267337070998767412540225911508196842253134355901263861121500650240296746702967594224401650220168780537141654489215019142122284308116284129004257364769474080721001708734051264841350424152506027932

n7 = 25360227412666612490102161131174584819240931803196448481224305250583841439581008528535930814167338381983764991296575637231916547647970573758269411168219302370541684789125112505021148506809643081950237623703181025696585998044695691322012183660424636496897073045557400768745943787342548267386564625462143150176113656264450210023925571945961405709276631990731602198104287528528055650050486159837612279600415259486306154947514005408907590083747758953115486124865486720633820559135063440942528031402951958557630833503775112010715604278114325528993771081233535247118481765852273252404963430792898948219539473312462979849137
c = 19892772524651452341027595619482734356243435671592398172680379981502759695784087900669089919987705675899945658648623800090272599154590123082189645021800958076861518397325439521139995652026377132368232502108620033400051346127757698623886142621793423225749240286511666556091787851683978017506983310073524398287279737680091787333547538239920607761080988243639547570818363788673249582783015475682109984715293163137324439862838574460108793714172603672477766831356411304446881998674779501188163600664488032943639694828698984739492200699684462748922883550002652913518229322945040819064133350314536378694523704793396169065179

n8 = 22726855244632356029159691753451822163331519237547639938779517751496498713174588935566576167329576494790219360727877166074136496129927296296996970048082870488804456564986667129388136556137013346228118981936899510687589585286517151323048293150257036847475424044378109168179412287889340596394755257704938006162677656581509375471102546261355748251869048003600520034656264521931808651038524134185732929570384705918563982065684145766427962502261522481994191989820110575981906998431553107525542001187655703534683231777988419268338249547641335718393312295800044734534761692799403469497954062897856299031257454735945867491191
c = 6040119795175856407541082360023532204614723858688636724822712717572759793960246341800308149739809871234313049629732934797569781053000686185666374833978403290525072598774001731350244744590772795701065129561898116576499984185920661271123665356132719193665474235596884239108030605882777868856122378222681140570519180321286976947154042272622411303981011302586225630859892731724640574658125478287115198406253847367979883768000812605395482952698689604477719478947595442185921480652637868335673233200662100621025061500895729605305665864693122952557361871523165300206070325660353095592778037767395360329231331322823610060006

n9 = 23297333791443053297363000786835336095252290818461950054542658327484507406594632785712767459958917943095522594228205423428207345128899745800927319147257669773812669542782839237744305180098276578841929496345963997512244219376701787616046235397139381894837435562662591060768476997333538748065294033141610502252325292801816812268934171361934399951548627267791401089703937389012586581080223313060159456238857080740699528666411303029934807011214953984169785844714159627792016926490955282697877141614638806397689306795328344778478692084754216753425842557818899467945102646776342655167655384224860504086083147841252232760941
c = 5418120301208378713115889465579964257871814114515046096090960159737859076829258516920361577853903925954198406843757303687557848302302200229295916902430205737843601806700738234756698575708612424928480440868739120075888681672062206529156566421276611107802917418993625029690627196813830326369874249777619239603300605876865967515719079797115910578653562787899019310139945904958024882417833736304894765433489476234575356755275147256577387022873348906900149634940747104513850154118106991137072643308620284663108283052245750945228995387803432128842152251549292698947407663643895853432650029352092018372834457054271102816934

n10 = 28873667904715682722987234293493200306976947898711255064125115933666968678742598858722431426218914462903521596341771131695619382266194233561677824357379805303885993804266436810606263022097900266975250431575654686915049693091467864820512767070713267708993899899011156106766178906700336111712803362113039613548672937053397875663144794018087017731949087794894903737682383916173267421403408140967713071026001874733487295007501068871044649170615709891451856792232315526696220161842742664778581287321318748202431466508948902745314372299799561625186955234673012098210919745879882268512656931714326782335211089576897310591491
c = 9919880463786836684987957979091527477471444996392375244075527841865509160181666543016317634963512437510324198702416322841377489417029572388474450075801462996825244657530286107428186354172836716502817609070590929769261932324275353289939302536440310628698349244872064005700644520223727670950787924296004296883032978941200883362653993351638545860207179022472492671256630427228461852668118035317021428675954874947015197745916918197725121122236369382741533983023462255913924692806249387449016629865823316402366017657844166919846683497851842388058283856219900535567427103603869955066193425501385255322097901531402103883869

n11 = 22324685947539653722499932469409607533065419157347813961958075689047690465266404384199483683908594787312445528159635527833904475801890381455653807265501217328757871352731293000303438205315816792663917579066674842307743845261771032363928568844669895768092515658328756229245837025261744260614860746997931503548788509983868038349720225305730985576293675269073709022350700836510054067641753713212999954307022524495885583361707378513742162566339010134354907863733205921845038918224463903789841881400814074587261720283879760122070901466517118265422863420376921536734845502100251460872499122236686832189549698020737176683019
c = 1491527050203294989882829248560395184804977277747126143103957219164624187528441047837351263580440686474767380464005540264627910126483129930668344095814547592115061057843470131498075060420395111008619027199037019925701236660166563068245683975787762804359520164701691690916482591026138582705558246869496162759780878437137960823000043988227303003876410503121370163303711603359430764539337597866862508451528158285103251810058741879687875218384160282506172706613359477657215420734816049393339593755489218588796607060261897905233453268671411610631047340459487937479511933450369462213795738933019001471803157607791738538467

n12 = 27646746423759020111007828653264027999257847645666129907789026054594393648800236117046769112762641778865620892443423100189619327585811384883515424918752749559627553637785037359639801125213256163008431942593727931931898199727552768626775618479833029101249692573716030706695702510982283555740851047022672485743432464647772882314215176114732257497240284164016914018689044557218920300262234652840632406067273375269301008409860193180822366735877288205783314326102263756503786736122321348320031950012144905869556204017430593656052867939493633163499580242224763404338807022510136217187779084917996171602737036564991036724299
c = 21991524128957260536043771284854920393105808126700128222125856775506885721971193109361315961129190814674647136464887087893990660894961612838205086401018885457667488911898654270235561980111174603323721280911197488286585269356849579263043456316319476495888696219344219866516861187654180509247881251251278919346267129904739277386289240394384575124331135655943513831009934023397457082184699737734388823763306805326430395849935770213817533387235486307008892410920611669932693018165569417445885810825749609388627231235840912644654685819620931663346297596334834498661789016450371769203650109994771872404185770230172934013971

n13 = 20545487405816928731738988374475012686827933709789784391855706835136270270933401203019329136937650878386117187776530639342572123237188053978622697282521473917978282830432161153221216194169879669541998840691383025487220850872075436064308499924958517979727954402965612196081404341651517326364041519250125036424822634354268773895465698920883439222996581226358595873993976604699830613932320720554130011671297944433515047180565484495191003887599891289037982010216357831078328159028953222056918189365840711588671093333013117454034313622855082795813122338562446223041211192277089225078324682108033843023903550172891959673551
c = 14227439188191029461250476692790539654619199888487319429114414557975376308688908028140817157205579804059783807641305577385724758530138514972962209062230576107406142402603484375626077345190883094097636019771377866339531511965136650567412363889183159616188449263752475328663245311059988337996047359263288837436305588848044572937759424466586870280512424336807064729894515840552404756879590698797046333336445465120445087587621743906624279621779634772378802959109714400516183718323267273824736540168545946444437586299214110424738159957388350785999348535171553569373088251552712391288365295267665691357719616011613628772175

n14 = 27359727711584277234897157724055852794019216845229798938655814269460046384353568138598567755392559653460949444557879120040796798142218939251844762461270251672399546774067275348291003962551964648742053215424620256999345448398805278592777049668281558312871773979931343097806878701114056030041506690476954254006592555275342579529625231194321357904668512121539514880704046969974898412095675082585315458267591016734924646294357666924293908418345508902112711075232047998775303603175363964055048589769318562104883659754974955561725694779754279606726358588862479198815999276839234952142017210593887371950645418417355912567987
c = 3788529784248255027081674540877016372807848222776887920453488878247137930578296797437647922494510483767651150492933356093288965943741570268943861987024276610712717409139946409513963043114463933146088430004237747163422802959250296602570649363016151581364006795894226599584708072582696996740518887606785460775851029814280359385763091078902301957226484620428513604630585131511167015763190591225884202772840456563643159507805711004113901417503751181050823638207803533111429510911616160851391754754434764819568054850823810901159821297849790005646102129354035735350124476838786661542089045509656910348676742844957008857457

n15 = 27545937603751737248785220891735796468973329738076209144079921449967292572349424539010502287564030116831261268197384650511043068738911429169730640135947800885987171539267214611907687570587001933829208655100828045651391618089603288456570334500533178695238407684702251252671579371018651675054368606282524673369983034682330578308769886456335818733827237294570476853673552685361689144261552895758266522393004116017849397346259119221063821663280935820440671825601452417487330105280889520007917979115568067161590058277418371493228631232457972494285014767469893647892888681433965857496916110704944758070268626897045014782837
c = 14069112970608895732417039977542732665796601893762401500878786871680645798754783315693511261740059725171342404186571066972546332813667711135661176659424619936101038903439144294886379322591635766682645179888058617577572409307484708171144488708410543462972008179994594087473935638026612679389759756811490524127195628741262871304427908481214992471182859308828778119005750928935764927967212343526503410515793717201360360437981322576798056276657140363332700714732224848346808963992302409037706094588964170239521193589470070839790404597252990818583717869140229811712295005710540476356743378906642267045723633874011649259842

n16 = 25746162075697911560263181791216433062574178572424600336856278176112733054431463253903433128232709054141607100891177804285813783247735063753406524678030561284491481221681954564804141454666928657549670266775659862814924386584148785453647316864935942772919140563506305666207816897601862713092809234429096584753263707828899780979223118181009293655563146526792388913462557306433664296966331469906428665127438829399703002867800269947855869262036714256550075520193125987011945192273531732276641728008406855871598678936585324782438668746810516660152018244253008092470066555687277138937298747951929576231036251316270602513451
c = 17344284860275489477491525819922855326792275128719709401292545608122859829827462088390044612234967551682879954301458425842831995513832410355328065562098763660326163262033200347338773439095709944202252494552172589503915965931524326523663289777583152664722241920800537867331030623906674081852296232306336271542832728410803631170229642717524942332390842467035143631504401140727083270732464237443915263865880580308776111219718961746378842924644142127243573824972533819479079381023103585862099063382129757560124074676150622288706094110075567706403442920696472627797607697962873026112240527498308535903232663939028587036724

n17 = 23288486934117120315036919418588136227028485494137930196323715336208849327833965693894670567217971727921243839129969128783853015760155446770590696037582684845937132790047363216362087277861336964760890214059732779383020349204803205725870225429985939570141508220041286857810048164696707018663758416807708910671477407366098883430811861933014973409390179948577712579749352299440310543689035651465399867908428885541237776143404376333442949397063249223702355051571790555151203866821867908531733788784978667478707672984539512431549558672467752712004519300318999208102076732501412589104904734983789895358753664077486894529499
c = 10738254418114076548071448844964046468141621740603214384986354189105236977071001429271560636428075970459890958274941762528116445171161040040833357876134689749846940052619392750394683504816081193432350669452446113285638982551762586656329109007214019944975816434827768882704630460001209452239162896576191876324662333153835533956600295255158377025198426950944040643235430211011063586032467724329735785947372051759042138171054165854842472990583800899984893232549092766400510300083585513014171220423103452292891496141806956300396540682381668367564569427813092064053993103537635994311143010708814851867239706492577203899024

n18 = 19591441383958529435598729113936346657001352578357909347657257239777540424811749817783061233235817916560689138344041497732749011519736303038986277394036718790971374656832741054547056417771501234494768509780369075443550907847298246275717420562375114406055733620258777905222169702036494045086017381084272496162770259955811174440490126514747876661317750649488774992348005044389081101686016446219264069971370646319546429782904810063020324704138495608761532563310699753322444871060383693044481932265801505819646998535192083036872551683405766123968487907648980900712118052346174533513978009131757167547595857552370586353973
c = 3834917098887202931981968704659119341624432294759361919553937551053499607440333234018189141970246302299385742548278589896033282894981200353270637127213483172182529890495903425649116755901631101665876301799865612717750360089085179142750664603454193642053016384714515855868368723508922271767190285521137785688075622832924829248362774476456232826885801046969384519549385428259591566716890844604696258783639390854153039329480726205147199247183621535172450825979047132495439603840806501254997167051142427157381799890725323765558803808030109468048682252028720241357478614704610089120810367192414352034177484688502364022887

n19 = 19254242571588430171308191757871261075358521158624745702744057556054652332495961196795369630484782930292003238730267396462491733557715379956969694238267908985251699834707734400775311452868924330866502429576951934279223234676654749272932769107390976321208605516299532560054081301829440688796904635446986081691156842271268059970762004259219036753174909942343204432795076377432107630203621754552804124408792358220071862369443201584155711893388877350138023238624566616551246804054720492816226651467017802504094070614892556444425915920269485861799532473383304622064493223627552558344088839860178294589481899206318863310603
c = 6790553533991297205804561991225493105312398825187682250780197510784765226429663284220400480563039341938599783346724051076211265663468643826430109013245014035811178295081939958687087477312867720289964506097819762095244479129359998867671811819738196687884696680463458661374310994610760009474264115750204920875527434486437536623589684519411519100170291423367424938566820315486507444202022408003879118465761273916755290898112991525546114191064022991329724370064632569903856189236177894007766690782630247443895358893983735822824243487181851098787271270256780891094405121947631088729917398317652320497765101790132679171889

n20 = 26809700251171279102974962949184411136459372267620535198421449833298448092580497485301953796619185339316064387798092220298630428207556482805739803420279056191194360049651767412572609187680508073074653291350998253938793269214230457117194434853888765303403385824786231859450351212449404870776320297419712486574804794325602760347306432927281716160368830187944940128907971027838510079519466846176106565164730963988892400240063089397720414921398936399927948235195085202171264728816184532651138221862240969655185596628285814057082448321749567943946273776184657698104465062749244327092588237927996419620170254423837876806659
c = 386213556608434013769864727123879412041991271528990528548507451210692618986652870424632219424601677524265011043146748309774067894985069288067952546139416819404039688454756044862784630882833496090822568580572859029800646671301748901528132153712913301179254879877441322285914544974519727307311002330350534857867516466612474769753577858660075830592891403551867246057397839688329172530177187042229028685862036140779065771061933528137423019407311473581832405899089709251747002788032002094495379614686544672969073249309703482556386024622814731015767810042969813752548617464974915714425595351940266077021672409858645427346
import gmpy2
def getit():
for i in range(1,21):
for j in range(i+1,21):
if gmpy2.gcd(eval('n'+str(i)),eval('n'+str(j)))!=1:
return (i,j)
#x=getit()#(5,18)
p=gmpy2.gcd(n5,n18)
q=n5//p
e=65537
c = 15406498580761780108625891878008526815145372096234083936681442225155097299264808624358826686906535594853622687379268969468433072388149786607395396424104318820879443743112358706546753935215756078345959375299650718555759698887852318017597503074317356745122514481807843745626429797861463012940172797612589031686718185390345389295851075279278516147076602270178540690147808314172798987497259330037810328523464851895621851859027823681655934104713689539848047163088666896473665500158179046196538210778897730209572708430067658411755959866033531700460551556380993982706171848970460224304996455600503982223448904878212849412357
n=n5
from Crypto.Util import number
print(number.long_to_bytes(gmpy2.powmod(c,gmpy2.invert(e,(p-1)*(q-1)),n)))

#flag{abdcbe5fd94e23b3de429223ab9c2fdf}

用gcd找最大公约数

gcd函数用法

fromgmpy2import*
fromCrypto.Util.numberimport*
c1=12641635617803746150332232646354596292707861480200207537199141183624438303757120570096741248020236666965755798009656547738616399025300123043766255518596149348930444599820675230046423373053051631932557230849083426859490183732303751744004874183062594856870318614289991675980063548316499486908923209627563871554875612702079100567018698992935818206109087568166097392314105717555482926141030505639571708876213167112187962584484065321545727594135175369233925922507794999607323536976824183162923385005669930403448853465141405846835919842908469787547341752365471892495204307644586161393228776042015534147913888338316244169120
n1=13508774104460209743306714034546704137247627344981133461801953479736017021401725818808462898375994767375627749494839671944543822403059978073813122441407612530658168942987820256786583006947001711749230193542370570950705530167921702835627122401475251039000775017381633900222474727396823708695063136246115652622259769634591309421761269548260984426148824641285010730983215377509255011298737827621611158032976420011662547854515610597955628898073569684158225678333474543920326532893446849808112837476684390030976472053905069855522297850688026960701186543428139843783907624317274796926248829543413464754127208843070331063037
c2=979153370552535153498477459720877329811204688208387543826122582132404214848454954722487086658061408795223805022202997613522014736983452121073860054851302343517756732701026667062765906277626879215457936330799698812755973057557620930172778859116538571207100424990838508255127616637334499680058645411786925302368790414768248611809358160197554369255458675450109457987698749584630551177577492043403656419968285163536823819817573531356497236154342689914525321673807925458651854768512396355389740863270148775362744448115581639629326362342160548500035000156097215446881251055505465713854173913142040976382500435185442521721
n2=12806210903061368369054309575159360374022344774547459345216907128193957592938071815865954073287532545947370671838372144806539753829484356064919357285623305209600680570975224639214396805124350862772159272362778768036844634760917612708721787320159318432456050806227784435091161119982613987303255995543165395426658059462110056431392517548717447898084915167661172362984251201688639469652283452307712821398857016487590794996544468826705600332208535201443322267298747117528882985955375246424812616478327182399461709978893464093245135530135430007842223389360212803439850867615121148050034887767584693608776323252233254261047
q=gcd(n1,n2)
#print(q)
#99855353761764939308265951492116976798674681282941462516956577712943717850048051273358745095906207085170915794187749954588685850452162165059831749303473106541930948723000882713453679904525655327168665295207423257922666721077747911860159181041422993030618385436504858943615630219459262419715816361781062898911

e相同,固定为65537,但有很多个不同n和c,通过对不同的n进行gcd算法,得到其最大公约数

list=[n,n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n13,n14,n15,n16,n17,n18,n19]
foriinrange(len(list)):
forjinrange(len(list)):
printi,j
try:
print(gcd(list[i],list[j]))
except:
print"error ",i
continue

得到第5和第18个n有最大公约数,即p

p=132585806383798600305426957307612567604223562626764190211333136246643723811046149337852966828729052476725552361132437370521548707664977123165279305052971868012755509160408641100548744046621516877981864180076497524093201404558036301820216274968638825245150755772559259575544101918590311068466601618472464832499

第十八个n

n=132585806383798600305426957307612567604223562626764190211333136246643723811046149337852966828729052476725552361132437370521548707664977123165279305052971868012755509160408641100548744046621516877981864180076497524093201404558036301820216274968638825245150755772559259575544101918590311068466601618472464832499

计算得到q

q=147764243536346715659432105628869451579704787136671496082719136693967862981444027430286693715470058237766749929595449234542432638995582675309345203650862074805309250048791833572328389815134763390112740125416594657830110772787259287349943894208620126222405887247024583782974900764827221144394822451457152873527

现在知道了e,p,q就可以求d了

e=65537
phi=(p-1)*(q-1)
d=gmpy2.invert(e,phi)
printd

得到d的值,

d=13562743945657943408364564962359595421553459520005647539719139738612476323673602035346134571777441032591878855564893430678795423993065742953851623322106712120462562608190426571067845605370626360261840916298602250474193347474096241238659315836325796267575928887616150984441634969009349847746153353510669414852002192564324438848254389325863998573423894828009338352925468347171086669606296309386036925000226173744913616074298733562304691023468969702615996002001088069626311809665947783602484952382166799449171947388556137244525042826420770104456738999679882039377885762030451821006284704090215755923465782632797896068166

接下来就是用d解c了

t=p*q
list=[c,c1,c2,c3,c4,c5,c6,c7,c8,c9,c10,c11,c12,c13,c14,c15,c16,c17,c18,c19]
foriinrange(len(list)):
printi
try:
print(pow(list[i],d,t))
except:
print"error ",i
continue

在运行结果中看出来,第十八个(c17)是最短的,先解码试试

m17=13040004482825176402070107903979416267670062118522537076883968693524598900675425175282673277
printhex(m17)
0x666c61677b61626463626535666439346532336233646534323932323361623963326664667d

将下面的16进制值在网上十六进制转字符得到:

flag{abdcbe5fd94e23b3de429223ab9c2fdf}

21、爆破e

fromCrypto.Util.numberimport*
fromgmpy2import*

n=  117930806043507374325982291823027285148807239117987369609583515353889814856088099671454394340816761242974462268435911765045576377767711593100416932019831889059333166946263184861287975722954992219766493089630810876984781113645362450398009234556085330943125568377741065242183073882558834603430862598066786475299918395341014877416901185392905676043795425126968745185649565106322336954427505104906770493155723995382318346714944184577894150229037758434597242564815299174950147754426950251419204917376517360505024549691723683358170823416757973059354784142601436519500811159036795034676360028928301979780528294114933347127
c=  41971850275428383625653350824107291609587853887037624239544762751558838294718672159979929266922528917912189124713273673948051464226519605803745171340724343705832198554680196798623263806617998072496026019940476324971696928551159371970207365741517064295956376809297272541800647747885170905737868568000101029143923792003486793278197051326716680212726111099439262589341050943913401067673851885114314709706016622157285023272496793595281054074260451116213815934843317894898883215362289599366101018081513215120728297131352439066930452281829446586562062242527329672575620261776042653626411730955819001674118193293313612128

p= 139916095583110895133596833227506693679306709873174024876891023355860781981175916446323044732913066880786918629089023499311703408489151181886568535621008644997971982182426706592551291084007983387911006261442519635405457077292515085160744169867410973960652081452455371451222265819051559818441257438021073941183
q= 842868045681390934539739959201847552284980179958879667933078453950968566151662147267006293571765463137270594151138695778986165111380428806545593588078365331313084230014618714412959584843421586674162688321942889369912392031882620994944241987153078156389470370195514285850736541078623854327959382156753458569
phn= (p-1)*(q-1)

e= 2
foreinrange(100000):
ifisPrime(e):
try:
d= invert(e,phn)
flag= long_to_bytes(pow(c,d,n))
flag= str(flag)
if"CTF"inflagor"flag"inflag:
print(e,'\n',flag)
exceptZeroDivisionError:
continue

21、爆破

除去以上题型,其余的基本都可以通过爆破的方式解决,因为爆破的方法五花八门,就不在一一列举

因为本篇rsa总结在电脑本地积累了很长时间,做一种题积累一个,脚本来源也记不清了,请大佬们勿怪

© 版权声明
THE END
喜欢就支持一下吧
点赞0
分享
大佬不来一句? 抢沙发

请登录后发表评论